Квинтуплет раздвоился
Около сверхмассивной черной дыры в центре Млечного Пути имеется небольшое звездное скопление Квинтуплет (Quintuplet). Астрономы получили новые данные о членах этой группы, и сделали еще один шаг к раскрытию тайн эволюции звезд. «Виновниками торжества» стали Питер Татхилл (Peter Tuthill) из Сиднейского университета и Дональд Фиджер (Donald Figer) из Рочестерского технологического института. Они обнаружили, что в состав Квинтуплета входят огромные молодые двойные звезды, которые производят большое количество пыли. Подробности этого открытия обнародованы в журнале Science от 18 августа 2006 года.Звезды Инь и Ян в скоплении Квинтуплет около центра нашей Галактики. Во врезках — снимки высокого разрешения, сделанные на телескопе им. Уильяма Кека. Изображение: Peter Tuthill (Sydney U.), Keck Observatory и Donald Figer (RIT) с сайта http://www.universetoday.com/mЦентральные области Млечного Пути давно интересовали астрономов, но газопылевые облака, находящиеся в направлении созвездия Стрельца, надежно скрывали сердце нашей Галактики в оптическом диапазоне. Тогда на помощь пришла инфракрасная техника, способная проникнуть всюду, где имеются малейшие признаки теплового излучения. Поскольку температура туманностей намного меньше, чем температура звезд, то инфракрасные приемники излучения просто «не видят» их, но хорошо различают звезды, находящиеся за галактическим туманом. Таким образом, завеса холодного газа и пыли была преодолена.
Десять лет назад Квинтуплет (от латинского quintuplex «пятерной»; назван так по числу пяти своих самых ярких в инфракрасном диапазоне звезд) был заснят космическим телескопом «Хаббл» и сразу заинтересовал ученых. Уже тогда группа астрономов под руководством Дональда Фиджера предполагала, что члены скопления — это гигантские звезды, производящие несметное количество пыли, но доказать это было невозможно из-за недостаточного разрешения снимков.
Позже появились более совершенные и мощные приемники инфракрасного излучения. Но, даже сейчас, чтобы получить детальные изображения членов скопления, ученым пришлось применить самое лучшее научное оборудование на гигантском оптическом телескопе имени Уильяма Кека (Гавайи). Максимальное разрешение (гораздо большее, чем у телескопа Хаббл), на которое только способен этот инструмент с применением адаптивной оптики, позволило увидеть у самых ярких звезд скопления пылевые отростки, закручивающиеся по спирали.
Рассмотрев это инфракрасное изображение, даже неискушенный читатель может понять, что изгибание и движение пылевых масс происходит здесь по траектории, явным образом указывающей на присутствие еще одного компаньона. Об этом говорят и современные космологические теории, согласно которым одиночная звезда не может «поднимать» столько пыли, да еще закручивать ее в спираль.
Тогда где же второй компаньон системы? Увы, даже максимального разрешения Кека недостаточно, чтобы разделить очень близкую пару небесных тел на отдельные звезды. Они слишком близки друг к другу и сливаются на изображении в одно целое. Но именно эта близость дает возможность разбрасывать окружающую пыль на огромные расстояния, подобно тому, как вращающееся поливальное устройство в вашем саду разбрызгивает воду. Чем ближе друг к другу компоненты двойной звезды, тем меньше их период обращения, тем больше сказываются эффекты гравитации системы.
Теперь мы знаем, что на космическом балу Квинтуплета в быстром вальсе кружатся пять молодых пар — звезд типа Вольфа-Райе. Расстояние между парами такого типа настолько мало, что они почти касаются друг друга своими поверхностями, а сами звезды имеют яйцеобразную форму, вытянувшись под действием взаимной гравитации. Самые эффектные из них получили собственные имена: Инь (Yin) и Ян (Yang), а характерная геометрия раскинувшихся «спиральных рукавов» позволит ученым измерить массы звезд двойных систем, а также орбитальный период и расстояние между ними.
Гигантские тандемы этого скопления находятся на ранней стадии их эволюции, заключительным аккордом которой будет взрыв сверхновой звезды. Но все пять пар скопления Квинтуплет еще достаточно молоды, поэтому взорвутся нескоро. С момента их рождения прошло около миллиона лет, а среднее время жизни красных гигантов — 5 миллионов лет. Они быстро развиваются, становясь всё больше и ярче, но существуют гораздо меньше времени, чем их маломассивные «коллеги» — слабые звезды, живущие миллиарды лет.
Источники:
1) Mystery of Quintuplet stars in Milky Way solved — Spaceflight Now, 17.08.2006.
2) Swirling Pinwheels Near the Heart of the Milky Way — Universe Today, 17.08.2006.
См. также:
Peter Tuthill, John Monnier, Angelle Tanner, Donald Figer, Andrea Ghez, William Danchi. Pinwheels in the Quintuplet Cluster // Science. Vol. 313. № 5789. P. 935.
Александр Козловский, Астрогалактика
http://elementy.ru (c)
Добавление
Сверхновая в прямом эфире Звездные ночи позволяют увидеть на небе массу удивительных объектов. Один из них, который сейчас с большим интересом наблюдают астрономы, не найти даже в сильный любительский телескоп, хотя излучает он как целая галактика. Если в полночь начала сентября вы посмотрите на восток, то увидите восходящие созвездия Овна и Тельца. В созвездии Тельца есть группа звезд под названием Плеяды. Мысленно проведя линию в 10 градусов к западу от Плеяд, вы не увидите… ничего. Но именно в этой точке небосвода находится объект, который каждые несколько секунд испускает столько энергии, сколько наше Солнце способно излучить лишь за несколько миллиардов лет!Необычайно мощная сверхновая звезда в созвездии Овна, которая затмевает целую галактику. Слева участок неба до взрыва (снимок Слоановского цифрового обзора неба), справа звезда во время вспышки (снимок космического телескопа «Свифт»). Изображения с сайта http://www.physorg.com/m Сверхновые звезды врываются, когда истекает время их жизни, которое напрямую зависит от массы. Чем больше масса звезды, тем меньше она живет. Звезды с массой 100 солнц живут всего несколько миллионов лет (!) и, как правило, заканчивают свое существование мощным взрывом, сбрасывая с себя внешнюю оболочку и разрушая все планеты в данной системе. Следует сказать, что нашему Солнцу взрыв не грозит, так как критическая масса, которую должна иметь звезда, чтобы стать сверхновой, равна 1,5 солнечных.
Взрыв происходит после сгорания термоядерного топлива звезды — водорода и последующих, образованных во время реакций, элементов. Сначала водород превращается в гелий, затем гелий превращается в углерод, и так до тех пор, пока очередь не дойдет до железа. Поскольку для образования атомов железа требуется гораздо большее количество энергии, которую звезда дать уже не способна, термоядерные реакции прекращаются.
Но такие реакции поддерживают устойчивость (баланс) звезды, при котором сила тяготения уравновешивается давлением внутренних конвективных потоков. Поэтому после появления дисбаланса ядро звезды катастрофически сжимается (сила тяжести у поверхности звезды резко падает), а освобожденная внешняя оболочка стремительно вырывается в открытое космическое пространство со скоростью около 10 000 км/сек. С такой скоростью можно долететь до Луны за полминуты!
Звезды в нашей Галактике взрываются примерно раз в 50 лет, но с Земли наблюдать удается лишь одну за несколько столетий. Это связано с тем, что все звезды находятся в галактической плоскости, и если какая-то из них вспыхнет по ту сторону центра Млечного Пути, то мы ее не увидим. Если же звезды вспыхивали достаточно близко к Земле, то они сияли на небосводе ярче Венеры и были видны даже днем. Современниками сверхновых в Млечном Пути были Тихо Браге (он наблюдал сверхновую в 1572 году) и Иоганн Кеплер (1604 год), а китайские летописи донесли до нас сведения о «звезде-гостье», которая появилась на небосводе в 1054 году.
23 февраля 1987 года вспыхнула сверхновая в Магеллановом облаке, но ученые смогли приступить к ее исследованиям только лишь через некоторое время после ее обнаружения. Однако для полноценных научных исследований необходимо проследить за сверхновой с первых секунд ее рождения. Это чрезвычайно трудная задача. Каким образом можно поймать вспышку, да еще произвести в то же время анализ излучения звезды?
Расположение сверхновой звезды на фоне созвездий. Изображение программы-планетария Starrynight3.11>Ждать близких вспышек в нашей Галактике, которые случаются с периодичностью в сотни лет, нереально. Но к счастью, галактик, подобных нашей, во Вселенной великое множество, и шансов обнаружить сверхновую в какой-либо из них гораздо больше. При этом, как ни парадоксально, большое расстояние играет положительную роль, так как чем дальше звезда, тем более мощную вспышку можно зафиксировать.
Выход был найден в запуске на орбиту космической обсерватории «Свифт» (Swift, буквально «Быстрый»), способной в течение нескольких секунд нацелиться на гамма-всплеск, проявивший себя на любом участке небесной сферы (гамма-всплески, англ. gamma-ray burst, GRB — далекие, на расстояниях в миллиарды световых лет, источники кратковременного гамма-излучения). 20 ноября 2004 года телескоп был выведен на орбиту, и почти за два года своей работы зафиксировал несколько сот вспышек гамма-излучения, в результате которых родились новые черные дыры.
Но какое отношение имеют к гамма-всплескам сверхновые звезды? Самое прямое! Несколько процентов самых ярких сверхновых (те, у которых масса превышает 40 солнечных) во время вспышки посылают в пространство своеобразное предупреждение, выражающееся в мощном потоке гамма-лучей. Звезда на космическом языке передает: «Я сейчас вспыхну!» Остается только зафиксировать этот гамма-всплеск и приступить к изучению звезды. Но, увы, несмотря на все старания, ученым долгое время не удавалось «поймать» для изучения такие звезды. И, наконец…
18 февраля 2006 года обсерваторией «Свифт» был принят гамма-всплеск, получивший наименование (по дате) GRB060218, который длился целых 40 секунд (обычное время вспышек гамма-излучения — от миллисекунд до нескольких секунд). За это время удалось зафиксировать всплеск тремя инструментами «Свифта»: телескопом для регистрации гамма-всплесков Burst Alert Telescope (BAT) с приемником гамма-лучей, рентгеновским телескопом X-Ray Telescope (XRT) и телескопом, работающим в ультрафиолетовом и видимом диапазоне, — Ultra-violet/Optical Telescope (UVOT).
Источник излучения находился в созвездии Овна на очень близком расстоянии к Земле (для гамма-всплесков). Он оказался ближе всех своих предшественников в 25 раз — на расстоянии «всего» 440 миллионов световых лет. К изучению объекта немедленно приступил один из крупнейших наземных телескопов — 8,2-метровый Очень большой телескоп (VLT) Европейской южной обсерватории в Чили, а также трехметровый рефлектор Обсерватории Lick Shane Университета Калифорнии. Им впервые за всю историю астрономии удалось получить оптическую спектроскопию ударной волны сверхновой.
Энергия, выделяемая при взрыве сверхновых, достигает 1046 джоулей! Иначе, яркость таких вспышек иногда превосходит блеск самой галактики, то есть светимость звезды возрастает до нескольких миллиардов солнц! А сравнительно близкий к Земле взрыв (до нескольких сотен световых лет) способен уничтожить всё живое на нашей планете. Поэтому такие исследования весьма важны для наших потомков, которые благодаря нынешним наблюдениями смогут предсказывать поведение ближайших звезд и предупреждать об опасности.
Пока же астрономам впервые удалось пронаблюдать взрыв сверхновой звезд в реальном времени. Изучение распространения взрывной волны и расширяющейся оболочки будет продолжаться еще долгое время. Но почему ученые обнародовали данные лишь через полгода? Именно столько времени потребовалось, чтобы тщательно проанализировать полученные данные. Результаты исследований опубликованы в журнале Nature от 31 августа, а авторами работ стали более 50 ученых со всего мира.
Сверхновая SN2006aj «вблизи». Изображение с сайта http://www.universetoday.com/mСверхновая получила название SN2006aj — это означает, что сверхновая звезда (SN) открыта в 2006 году 36-й по счету. Счет ведется по буквам латинского алфавита (в нем 26 букв). Когда количество звезд достигает 27, то 26 предыдущих обозначаются одной (первой) буквой и счет начинается сначала, но буквенная часть принимает вид «аа» (27-я звезда), «аb» (28-я) и т. д. Если звезд больше 26 + 26 = 52, то первая буква изменяется на b, и тогда 53-я звезда будет иметь обозначение «bа», например SN2006ba и т. д.
Итак, SN2006aj стала первой сверхновой, изученной астрономами «вдоль и поперек», причем на самых ранних стадиях. Первые секунды и минуты звездных катаклизмов являются самыми ценными для науки. Именно в самом начале звездных взрывных процессов и процессов, предшествующих взрыву, происходят изменения, способные дать основу для точного описания эволюции звезд.
Как всегда, новое открытие преподнесло новые сюрпризы и опять заставляет пересматривать соответствующие теории. Измерив массу звезды, ученые пришли к выводу, что она не превышает 20 солнечных масс, что ниже предела образования черных дыр после вспышки сверхновых (этот предел составляет 40 масс Солнца). Значит, после вспышки SN2006aj образовалась нейтронная звезда. Но, как правило, при этом происходит выброс рентгеновских лучей высокой энергии, и лишь небольшая доля общего излучения приходится на гамма-лучи. Откуда тогда такой мощный гамма-всплеск, характерный лишь для образования черных дыр?
Это новая загадка для знатоков Вселенной.
Источник: Scientists watch supernova in real-time // PhysOrg.com/m, 30.08.2006.
Александр Козловский, Астрогалактика
http://elementy.ru (c)